Bio-Cap®
Adhesive Base and Liner

BIO-CAP ADHESIVE BASE AND LINER
- Bio-Cap is a self-adhesive resin-ionomer base and liner material which contains fluoride. This unique formula is in a single barrel syringe which requires no mixing and quickly light cures.
- Bio-Cap is self-adhesive and will bond to dentin surfaces.
- Bio-Cap is compatible to dentin bonding agents, composites, and amalgam.
- Bio-Cap has been shown to be safe and efficacious for use as a pulp capping material, initiating the formation of reparative dentin.

CLINICAL USES
- Dentin liner
- Protective base
- Pulp capping

Adhesive Base and Liner
Bio-Cap®
DIRECTIONS

1. Remove caries.

2. Apply 2.5% NaOCl to the prep. (If there is a hemorrhage from exposed pulp, use wet cotton pellet, holding in place for 20-30 seconds.) Gently rinse and air-dry.

Pulp Capping

a. Fill a needle tip onto the syringe.

b. Apply layer of Bio-Cap® to cavity floor. Adapt and shape as needed.

c. Light-cure.

d. Cure bonding agent and then proceed with a routine composite restoration.

Note: For restorations that are deeper than 2 mm, an incremental placement technique is recommended.

Base/Liner

a. Attach needle tip to the Bio-Cap syringe for precise placement and control. Always bench test restorative materials before use in vivo.

b. Apply a layer of Bio-Cap® to cavity floor. Adapt and shape as needed.

c. Light-cure.

For a composite restoration, etch the prepared and cured Bio-Cap, apply a bonding agent and then proceed with a routine composite restoration. Due to variations in the performance characteristics of light-curing units, ALWAYS bench test restorative materials before use in vivo. Curing test rings are provided for this purpose.

Note: For a cavity preparation is deep, curing exposure times must also be increased due to beam divergence and angular placement of the light transmitting element to the restoration. An incremental filling technique is recommended and each increment should be fully cured prior to applying additional layers.

General guidelines for curing light unit exposure times. See manufacturer’s instructions. ALWAYS bench test restorative materials before use in vivo.

- Curing lights with power density greater than 800 mW/cm². Cure the buccal and lingual in 10 second exposures for each area.
- Curing lights with power density less than 300 mW/cm². Cure the buccal and lingual in 15 second exposures for each area.

With Sapphire PAC lights (all models) start with 5 second exposures.

- For all other curing lights, halogen, LED and other refer to the manufacturer instructions. A minimum of 10-30 second is recommended. Use a dental probe to scope test the hardness of the top and bottom surfaces. The bottom surface should be as hard as the top surface.

Curing lights with power density less than 300 mW/cm² should not be used.

If the bottom surface is not completely cured repeat steps (b) to (c). Repeat until the bottom surface is completely cured.

- Maintain a log including material, shade and associated curing exposure time. Use this log to monitor system performance.

Note: If a cavity preparation is deep, curing exposure times must also be increased due to beam divergence and angular placement of the light transmitting element to the restoration. An incremental filling technique is recommended and each increment should be fully cured prior to applying additional layers.

General guidelines for curing light unit exposure times. See manufacturer’s instructions. ALWAYS bench test restorative materials before use in vivo.

- Curing lights with power density greater than 800 mW/cm². Cure the buccal and lingual in 7 second exposures for each area.
- Curing lights with power density less than 600 mW/cm². Cure the buccal and lingual in 10 second exposures for each area.

With Flashlite® Magna 4.0 LED lights (all models) start with 15 second exposures.

- For all other curing lights, halogen, LED and other refer to the manufacturer instructions. A minimum of 10-30 second is recommended. Use a dental probe to scope test the hardness of the top and bottom surfaces. The bottom surface should be as hard as the top surface.

If the bottom surface is not completely cured repeat steps (b) to (c). Repeat until the bottom surface is completely cured.

- Maintain a log including material, shade and associated curing exposure time. Use this log to monitor system performance.

SAFETY DATA SHEETS AVAILABLE AT denmat.com

RELATED DEN-MAT PRODUCTS

Description

Product Number

Bio-Cap® Ke

036451110

Sapphire® Plus Plasma Arc Curing Light

033968000

Flashlite® Magna 4.0 LED Curing Light

03179

SAFETY DATA SHEETS AVAILABLE AT denmat.com

DIRECTIONS

1. Remove caries.

2. Apply 2.5% NaOCl to the prep. (If there is a hemorrhage from exposed pulp, use wet cotton pellet, holding in place for 20-30 seconds.) Gently rinse and air-dry.

Pulp Capping

a. Fill a needle tip onto the syringe.

b. Apply layer of Bio-Cap® to cavity floor. Adapt and shape as needed.

c. Light-cure.

Note: For restorations that are deeper than 2 mm, an incremental placement technique is recommended.

Base/Liner

a. Attach needle tip to the Bio-Cap syringe for precise placement and control. Always bench test restorative materials before use in vivo. Curing test rings are provided for this purpose.

b. Fill the 2 mm deep well of the test ring and level material.

c. Position the light transmitting element perpendicular to and approximately 3mm above the top surface of the ring.

With Sapphire PAC lights (all models) start with 5 second exposures.

With Flashlite® Magna 4.0 LED lights (all models) start with 10 second exposures.

For all other curing lights; halogen, LED and other refer to the manufacturer instructions. A minimum of 10-30 second is recommended.

- Use a dental probe to scope test the hardness of the top and bottom surfaces. The bottom surface should be as hard as the top surface.

Curing lights with power density less than 300 mW/cm² should not be used.

If the bottom surface is not completely cured repeat steps (b) to (c). Repeat until the bottom surface is completely cured.

- Maintain a log including material, shade and associated curing exposure time. Use this log to monitor system performance.

Note: If a cavity preparation is deep, curing exposure times must also be increased due to beam divergence and angular placement of the light transmitting element to the restoration. An incremental filling technique is recommended and each increment should be fully cured prior to applying additional layers.

General guidelines for curing light unit exposure times. See manufacturer’s instructions. ALWAYS bench test restorative materials before use in vivo.

- Curing lights with power density greater than 800 mW/cm². Cure the buccal and lingual in 7 second exposures for each area.
- Curing lights with power density less than 600 mW/cm². Cure the buccal and lingual in 10 second exposures for each area.

With Sapphire PAC lights (all models) start with 5 second exposures.

- For all other curing lights, halogen, LED and other refer to the manufacturer instructions. A minimum of 10-30 second is recommended. Use a dental probe to scope test the hardness of the top and bottom surfaces. The bottom surface should be as hard as the top surface.

If a cavity preparation is deep, curing exposure times must also be increased due to beam divergence and angular placement of the light transmitting element to the restoration. An incremental filling technique is recommended and each increment should be fully cured prior to applying additional layers.

General guidelines for curing light unit exposure times. See manufacturer’s instructions. ALWAYS bench test restorative materials before use in vivo.

- Curing lights with power density greater than 800 mW/cm². Cure the buccal and lingual in 10 second exposures for each area.
- Curing lights with power density less than 600 mW/cm². Cure the buccal and lingual in 15 second exposures for each area.

With Flashlite® Magna 4.0 LED lights (all models) start with 20 second exposures.

- For all other curing lights, halogen, LED and other refer to the manufacturer instructions. A minimum of 10-30 second is recommended. Use a dental probe to scope test the hardness of the top and bottom surfaces. The bottom surface should be as hard as the top surface.

Curing lights with power density less than 300 mW/cm² should not be used.

- Maintain a log including material, shade and associated curing exposure time. Use this log to monitor system performance.

Note: If a cavity preparation is deep, curing exposure times must also be increased due to beam divergence and angular placement of the light transmitting element to the restoration. An incremental filling technique is recommended and each increment should be fully cured prior to applying additional layers.

STORAGE:

Do not expose to temperatures exceeding 77°F (25°C). Do not expose to direct sunlight. Do not freeze.

RELATED DEN-MAT PRODUCTS

Description

Product Number

Bio-Cap® Ke

036451110

Sapphire® Plus Plasma Arc Curing Light

033968000

Flashlite® Magna 4.0 LED Curing Light

03179

SAFETY DATA SHEETS AVAILABLE AT denmat.com